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Creep and stress relaxation of germanium 
single crystals 

M. BEKIROVIC ,  P. FELTHAM 
Department of Physics, Brunel University, Uxbridge, London, UK 

Isothermal creep and stress relaxation were studied in germanium single crystals 
oriented for double slip at 400 to 700~ under compressive stresses of 180 to 490 kgf cm -~. 
The curves, S-shaped in both types of experiment, were compared with corresponding- 
ones derived from a stochastic model involving a spectrum of energy barriers to 
dislocation movement. Agreement was satisfactory for stress relaxation; discrepancies 
in the case of creep point to the difficulty of correlating creep and stress relaxation when 
an equation of state is inadequate as an approximation for representing the plastic 
response. Differences between predicted and observed behaviour are, however, of 
diagnostic value concerning the extent of dislocation multiplication and other structural 
changes. 

1. I n t r o d u c t i o n  
In a recent study of the creep of germanium 
crystals at elevated temperatures, Chaudhri 
and Feltham [1] showed that a reasonable 
interpretation of their results was possible 
within the framework of a stochastic model of 
creep [2, 3], in which a spectrum of energy 
barriers, rather than a single specific barrier-type, 
determined the creep rate. The main object of the 
present work was to derive from the model more 
exact solutions than the "zeroth"-order ones 
used in [1 ], particularly for the representation of 
S-shaped creep-curves generally observed in 
crystals having the diamond structure, and to 
use it for the representation of creep as well as 
stress-relaxation data obtained with germanium 
crystals from the same stock as in [1]. By 
encompassing the earlier results within this 
program it was intended to extend the scope of 
the work. 

2. Experimental  methods and results 
The germanium crystals used in all the experi- 
ments came from the same batch as those 
described previously [1]. They were Sb-doped 
with 7 • 1013 donors cm -3, with an initial 
dislocation density of 3 x 10 3 cm -2, and 
measured 0.4 x 0.4 x 1.0 cm u. Their orientation 
was for multiple slip; the direction of the long, 
compression-axis was [1 10]. The rectangular 
sides were (I T 1) and (112). Initially the Schmid- 
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factor for slip was 0.41 for all favoured systems. 
To avoid difficulties due to barrelling, plastic 
strains were, in all cases, limited to a few per cent. 

Polishing of the crystals, the design of the 
vacuum furnace, and other experimental detail 
appertaining to the creep in compression, have 
been described in [1 ]. Stress relaxation took place 
in a "Nimonic 90" compression-tool encased in 
a cylindrical vacuum-chamber, which was 
seated on the guide-rails of a "Hounsfield 
Tensometer". Stress was automatically recorded 
via a sensitive inductive transducer activated by 
th, cross-beam of the machine. The contribution 
of the latter to the relaxation was checked with 
the aid of a zirconia dummy-specimen, and was 
found to be negligible at all temperatures used. 

Ideally, comparisons of creep and stress 
relaxation are best made with crystals having 
similar substructures, and deformation of the 
crystals during relaxation should be prevented 
altogether [41, to inhibit work-hardening effects. 
The first requirement was not strictly adhered to 
because loading a crystal for creep generally 
occurred within 1 to 2 sec, while periods one to 
two orders of magnitude longer were required to 
apply the same stress to a crystal in a relaxation 
experiment. However, earlier creep data have 
shown [l ] that within a certain domain of stress 
and temperature a relatively long "incubation 
period" of low strain-rate preceded the onset of 
more rapid creep, so that the initial loading-rate 
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was then expected not to be of  decisive signifi- 
cance in relation to the characteristics of the 
creep. 

The plastic deformation sustained by speci- 
mens in the course of relaxation, following 
deformation to the initial compressive stress 
~r0, was generally of the order of �89 %. In view of 
the weak influence of the initial stress-level on 
the shape of relaxation curves and on the total 
relaxation observed within the domain of 
variables used, we shall not attempt to correct 
for any effects arising from this although, as 
some results, discussed below, indicate, the 
problem may need to be examined in detail at 
relatively low temperatures. 

The preceding considerations led us to confine 
the work to temperatures and stress levels in 
which S-shaped creep and stress relaxation curves 
were observed. Combinations of the variables 
resulting in near-logarithmic type of curves, i.e. 
with high initial rates, although studied in [1 ], 
were excluded. 

In a relaxation experiment the crystal, in 
thermal equilibrium in the compression tool, 
was deformed at a strain-rate of  about 3 x 10 -4 
sec -1 until the desired compressive-stress level 
was reached. The machine was then stopped, and 
the relaxation was automatically recorded over 
periods of up to 14 h. Special attention was paid 
to temperature control and elimination of 
associated expansion-effects in the machine. 
Except for a special test at 450 ~ in which the 
specimen was allowed to relax at three con- 
secutive stress levels, each crystal was allowed to 
relax only once. Some crystals were also pre- 
strained at half the above loading rate. At 
470~ differences in the relaxation behaviour of 
crystals deformed at standard and the reduced 
rates, respectively, became significant only at 
stresses somewhat outside the range used in the 
runs here considered. With the lower rate the 
curves were slightly displaced in the positive 
direction of the time axis, and the extent of 
relaxation, as measured after 3 x 104 see, was 
about 10 % lower than in the corresponding case 
for the more rapidly pre-strained crystal. 

In comparing creep and stress-relaxation 
data, results from first runs, in which the initial 
structures can be regarded as reasonably similar 
in creep and corresponding stress-relaxation 
specimens, are most directly relevant for pur- 
poses of comparison. The effect of structural 
changes is apparent f rom Fig. 1, in which all 
three curves were obtained with the same 
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Figure 1 A sequence of stress-relaxation curves obtained 
with a single specimen, showing the progressive reduction 
in total relaxation, and a "shift" of the curves to the left 
on repeated relaxation. 
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Figure 2 Stress relaxation curves in compression at three 
temperatures. A new crystal was used for each curve. The 
lines represent measurements; the points are "theoretical". 

crystal. Successive curves are seen to be pro- 
gressively displaced towards the left as the initial 
stress-level is raised. At the same time the total 
extent of relaxation decreases, suggesting a more 
flow-resistant, work-hardened structure at the 
higher stress-levels. This feature is much less 
pronounced in the sets where each run was 
carried out with a new crystal (Fig. 2). The 
continuous curves, just like the corresponding 
ones for creep in Fig. 3, represent measurements; 
the points shown associated with them in both 
figures were obtained by means of the theoretical 
model, as will be shown below. 

An uninterrupted stress/deformation curve, in 
which the crystal deformed at the standard 
strain-rate, transcribed from the drum-chart 
of the Hounsfield Tensometer (Fig. 4). shows the 
relation between the cross-head traverse and the 
stress acting on the crystal to be approximately 
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Figure 3 Compressive creep at three temperatures. A 
new crystal was used for each experiment. The origins of 
the strain axis have been displaced arbitrarily for con- 
venience of representation. Full lines represent measure- 
ments; the points are "theoretical". Compressive stresses 
were (a) 313, (b) 250 and (c) 188 kgf cm-% 
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Figure 4 A loading-unloading record for a crystal com- 
pressed in the "Hounsfield Tensometer", indicating the 
anelastic (BC) and plastic (CO) parts of the deformation. 

linear on loading to a stress level including and 
exceeding those used in any relaxation run. The 
cross-head traverse here includes a significant 
elastic contribution f rom the machine which, 
together with the elastic part  of  the deforma- 
tion of  the crystal, defines the slope of the 
tangent at the point A, i.e. that of  the line AB 
in the figure. The time-dependent, anelastic part  
o f  the deformation of the specimen, following 
unloading at about  the same absolute rate as 
used in loading along OA, is represented by 
BC. The irreversible, plastic strain, equal to 
about 3 ~  in this case, is indicated by OC. 
Thus extensive relaxation can be seen to have 
taken place in the course of  unloading, i.e. 

during about 2�89 min. This is qualitatively in 
agreement with the substantial drop in the 
stress during relaxation at 600~ apparent 
from Fig. 2. 

Some observations of  the dislocation sub- 
structure developing in the crystals during creep 
were reported in [1 ]; no further TEM studies 
were made. 

3. T h e o r y  

Interpretation of creep data in [1] was based 
on a stochastic model of  dislocation kinetics [2], 
which has since been developed further [3]. 
The choice of  this model for the interpretation of 
creep and, by implication, stress-relaxation, 
particularly its suitability for crystals with the 
diamond structure, has been discussed before 
[1]; we therefore outline only its basic features 
as a preliminary to the derivation of a new 
solution representing S-shaped creep and stress- 
relaxation curves, which is not restricted in its 
scope by the rather severe approximations 
previously made. 

In the model referred to [2, 3], an activated 
jump of a slip unit, for example of  a dislocation 
segment pinned at a localized obstacle as 
indicated in Fig. 5, is assumed to take it f rom a 
barrier of  height u, lying within a spectrum 
Umin ~ U ~< Umax, to a new one. The latter may 
be either higher or lower than u by a "small"  
fixed amount  3u, which is taken to be constant 
in any given creep experiment. 

. /  & ~ 

Figure 5 Transition of a dislocation segment between 
localized barriers. 

In view of the assumed randomness of  the 
internal stress-field, the chance of a jump to a 
higher barrier is taken equal to the probability 
of  a transition to a lower one. By considering 
three consecutive energy-intervals, as shown in 
Fig. 6, a differential equation is obtained for the 
number n(u, t).~u of such states per unit volume 
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Figure 6 Possible transitions from and to a given energy 
level in the barrier-height distribution. 
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of the crystal at time t after the onset of creep. 
The equation is then transformed by using the 
transition-probability density defined by N (u, t) 
= n(u, t ) .  exp ( -  u/kT),  leading to the relation 

ON e_U/~T D 02N 
o~ = S-Eu~' 

D = �89 v(Su) ~ = constant (1) 

where v is a vibrational frequency of the order 
of 101~ sec -1 [5]. Equation 1 can be regarded as 
the Fokker-Planck equation of an Ornstein- 
Uhlenbeck process in the stochastic variable N 
[61. 

A solution of Equation 1 suitable for the 
present purpose is obtained by the following 
successive steps. First Equation 1 is rewritten 
in terms of s, where s = exp (u/kT).  Then vari- 
ables are separated by writing N (s, t) = N~ (s) 
�9 N~ (t). Finally, on expressing N~ in terms of 
the new variable r, where r = s +, one obtains N~ 
as a Bessel equation of order zero in r, and N2 
as an exponential term in t. 

We shall first consider a solution which leads 
to a constantly diminishing creep rate, and then 
generalize it to include curves of the required 
S-shape. It will be convenient, for purposes of 
discussion, to work with the variables r and t. 

The first solution referred to is given by the 
Fourier-Bessel series 

where 

09 

N (r, t) = Z Ai e -~'~ Jo(c~ir), (2) 
i = 1  

t~ = D -~ (2 kT/oq) ~ , (3) 

Ai oc 1/[cq J 1 (c~irmax)], (4) 

and the ~ ' s  are the positive roots of J0(~rmax); 
rmax corresponds to the largest u-value in the 
operative spectrum, i.e. the transition probability 
for jumps over barriers higher than u = Umax is 
negligible within the period of the creep test: 
such states remain "frozen-in". The minimum 
u-value is taken to be zero. This assumption is 
made for convenience, but is not essential. It 
may not be suitable in the case of heavily pre- 
strained crystals. Jo and J1 denote Bessel 
functions of the zeroth and first order, respec- 
tively. 

Equation 2 is the complete analogue of that 
representing the temperature N (r, t) in an in- 
finite cylinder of radius rmax, initially at a 
constant temperature throughout, the surface of 
which is cooled to zero at t = 0, and then held 
invariant at this, new, level [7]. A graphical 
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representation of the function is given by 
Carslaw and Jaeger [7]. For any given value of  
r, N decreases with time; the curve is S-shaped�9 
The creep resulting from such a distribution is 
readily shown to be of the continuously- 
decelerating type, but we do not propose to 
examine it here further. However, we shall use 
Equation 2 in the representation of S-shaped 
creep curves. 

We note, first, that Equation 1 is invariant with 
respect to a displacement of the origin along the 
time axis, i.e. with to constant, 

DN ON 
- , ( 5 )  

0(t + to) ~t 

It follows that N (r, t + to), expressed in the 
same form as Equation 2, but with t replaced 
everywhere by t + to, is also a solution of 
Equation 1. As Bessel's equation is linear, Ns, 
given by 

Ns = N ( r , t ) - N ( r , t  + to) (6) 

also satisfies Equation 1. For any given r-value 
the form of N~ is bell-shaped. This is readily 
seen by considering "small" values of to, when, 
as is apparent from Equation 6 (remembering 
that N, for fixed r, is S-shaped), 

ON 
N~ ~ to--~" (7) 

Now if, in accord with [2], each activated jump, 
e.g. of a dislocation segment, is assumed to make 
the same "average" contribution to the overall 
shear-strain, then the strain-rate is proportional 
to the integral of the transition probabilities 
either over the u-spectrum or over the corre- 
sponding range of r-values, depending upon the 
representation used. With the form of N given 
by Equation 2, integration of Ns with respect to r 
leads to a series of exponential terms in the time 
variable, of positive and negative signs, the pre- 
exponential coefficients in which depend on 
i, rmax and to. The plastic shear-strain is then 
obtained, from the strain-rate evaluated in this 
manner, by integration with respect to time. 
Clearly, the resulting equation again consists 
of a series of exponential terms, i.e. we may write 
formally 

7 = 70 ~ C~ (1 - e - 'm)  (8) 
i = 1  

with 
co 

~,o = v (oo) /2 ,  c ~ ,  ( 9 )  
i = l  
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the Ci co-efficients depending on rmax  and to; 
~,(oo) represents the strain attained asymptoti- 
cally as t ~ oo. Its dependence on stress and 
temperature is not pronounced, as may be 
inferred from Fig. 3; this has been discussed 
briefly in [1 ], and will not be analysed further. 

The form of the Ccterms is readily established 
on the basis of the steps taken in deriving 
Equation 8 from Equation 6, but as the terms 
depend on the boundary conditions, i.e. on to 
and on the extrema of the u-spectrum, as 
seems to be confirmed by Fig. 1, generalizations 
about these coefficients, useful at the present 
stage of development of the theory, cannot be 
readily made. We shall revert to the use of 
Equation 8 for the analysis of creep data below, 
after considering its relevance to stress relaxa- 
tion. 

Now, in the ideal case, when stress relaxation 
in shear occurs at constant strain, the sum of the 
"elastic" and "plastic" shear rates is zero, i.e. 

~el + ~ -- 0 ,  (10) 

where the elastic strain-rate is equal to +/G, -r 
being the shear stress and G the shear modulus. 
It follows that in the equation representing the 
plastic shear-rate, the latter may be replaced by 

- +/G at the time when the total strain-rate is 
reduced to zero. Then, proceeding as in the case 
of creep discussed above, one obtains instead of 
Equation 8 

C,(�94 - e-~/t9 
~- (o )  - ~ - ( t )  = i=1 , (11) 

~-(0)  - ~ - ( o o )  
2J C~ 

i=1 

showing the identity of the functional forms of 
the creep and stress relaxation Equations 8 and 
11. 

Writing AT(t)  for the numerator of the left- 
hand side of Equation 11, one obtains, on using 
Equations 8 and 9: 

A.r = K y ( t )  ; K = A 'r (oo) /y(oo) .  (12) 

The shear stresses and strains appearing in 
Equations 8 to 11, including ~-(oo) and ~,(oo), can 
be replaced in both equations by corresponding 
compressive stresses and strains respectively. 

We note that the derivation of Equation 11, 
and equally of Equation 8, by integration of rate 
equations with respect to time, implies that 
structural changes, other than those encompassed 
by the postulates of the model, do not occur in 
the course of creep and stress relaxation. This 

may be a reasonable assumption at relatively 
low temperatures, when recovery processes are 
essentially of the "dynamic" type. At elevated 
temperatures diffusion-induced structural 
changes may however occur. These may be more 
pronounced in a creep test at a certain constant 
stress compared with those in a relaxation test in 
which the stress is only initially at the same 
constant level. Dislocation multiplication and 
other stress-sensitive effects contributing to the 
plastic response of the crystal may, in that case, 
be rather less intense. K, in Equation 12 would 
then be expected to decrease with increasing 
temperature. The evidence in Figs. 2 and 3, 
appertaining to the total extent of relaxation, and 
to the final strains attained in creep, provide 
some support for this view. Consequently, 
correlations between creep and stress-relaxation, 
as represented by Equations 8 and 11 for 
example, may prove of diagnostic value of the 
stress sensitivity and other features of the micro- 
mechanics of plasticity at elevated temperatures. 

4. Experimental results in the light of the 
model 

In order to investigate the extent of the applica- 
bility of the model, particularly Equations 8 and 
11, to the creep and stress-relaxation data 
obtained in [1] and in the present work, the 
following procedure was adopted. Firstly, curves 
of S-shaped form, complying with Equation 8, 
were fitted empirically to experimental creep 
data obtained in [1] at a constant stress over a 
relatively wide temperature range. A reasonable 
fit was obtained by using only two terms of the 
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Figure 7 Creep curves o f  crystals deformed at  var ious  
tempera tures  at  a compress ive  stress o f  485 kgf  c m - L  
Measurements ,  t aken  f rom [1 ], are indicated by full l ines;  
the po in t s  were obta ined  by means  of  Equa t ion  8, us ing  
two terms only. Values o f  CJC1 were, on  going f rom (a) 
to (e), - 0 . 2 0 ,  - 0 . 2 0 ,  - 0 . 3 0 ,  - 0 . 3 8  and  - 0 . 3 0 ,  re- 
spectively. The  t imes tl  and  t2 are given in Fig. 8. 
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Figure 8 The times t~ and t~ used in the evaluation of the 
data shown by points in Fig. 7. The times t* appertain to 
the calculated inflexion points of the curves. 

series, as is apparent from Fig. 7 in which the 
full lines represent measurements, while the 
points were obtained with the aid of Equation 8. 

Values of tl and t2 which were substituted into 
Equation 8 are indicated in Fig. 8, together with 
t*, which corresponds to the calculated in- 
flexion-points of  the curves. The slopes of the 
lines in Fig. 8 yield, with the usual Arrhenius 
analysis, "activation energies" of 1.1 to 1.4 eV, 
agreeing reasonably well with the value of 
about 25 kT suggested by the model [1] for the 
most probable barrier height in the spectrum; 
at 500~ 25 kT ~ 1.6 eV. 

Secondly, by interpolation and extrapolation, 
values of tl and t2 were derived from the lines in 
Fig. 8 for the temperatures at which the experi- 
mental results represented in Figs. 2 and 3 were 
obtained. They are shown in Table I together 
with the approximate CJCI values. The latter 
corresponded to the CJC~-ratios used, at nearly 
the same temperatures, for the evaluation of the 
"theoretical" points in Fig. 7. The value of 
CJC~ for 400~ was obtained by extrapolation 
of the, apparently near-linear, curve representing 
the temperature dependence of this ratio, based 
on the few values used in Fig. 7. 

TABLE I Parameters used in Equations 8 and 11 to 
obtain the calculated values shown by points 
in Figs. 2 and 3. The times are given in 
seconds. 

~ tl t2 t* C2/C~ 
400 12000 7800 9800 - 0.54 
500 1080 480 565 -0.38 
600 27 168 72 -0.20 

The "theoretical" results, denoted by points in 
Figs. 2 and 3, show rather good agreement with 
the experimental curves in the case of stress 
relaxation at the lower stress-levels. At higher 
stresses, probably as a result of severe structural 
changes induced during loading, the agreement 
on using the same parameters as for the low- 
stress curves was less satisfactory, and the 
points have not been drawn in. An anomalously 
"wavy" curve was found in the relaxation from 
the 313 kgf cm -2 level at 400~ the same 
instability occurred on repeating the run with a 
new crystal. 

5. Conclusions 
Solutions representing S-shaped creep and stress 
relaxation curves, derived from a stochastic 
model of crystal plasticity [2, 3], were found to 
provide a foundation for the representation and 
study of creep and stress relaxation in germanium 
crystals at elevated temperatures. Some weak- 
nesses of the analysis reside in the simplifications 
which were necessary originally to make the 
theory tractable, as well as in the present 
application of the theory to experiment. In 
particular some lack of rigour was unavoidable in 
the transition from the "full" equation deduced 
from the model, i.e. Equation 6, to the two-term 
approximation used in the analysis of the data. 
While these, and other, points need further 
attention, the present approach nevertheless 
seems potentially rewarding from the point of 
view of the interpretation of creep and stress 
relaxation in solids as evolutionary stochastic 
processes. 
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